Генетические аспекты травмирования как один из критериев спортивного отбора
Аннотация и ключевые слова
Аннотация (русский):
Цель исследования – аналитический обзор данных литературы по оценке генетической природы травматизма в прыжках в воду как одного из критериев спортивного отбора. Методы исследования: анализ литературы в базах данных PubMed, Cochrane, Medline и GoogleScholar. Результаты исследования и выводы. Представлен обзор генов, определяющих предрасположенность к возникновению травм опорно-двигательного аппарата у прыгунов в воду. Показано, что применение в спортивной практике генетического анализа для оценки наиболее перспективных спортсменов в прыжках в воду может носить рекомендательный и информационный характер. Необходимы исследования для углубления понимания генетических основ травматизма и разработки эффективных подходов к спортивному отбору и профилактике травм. Для этого важно учитывать особенности генетики, эпигенетики, окружающей среды (тренировки, отдых, питание, психоэмоциональное состояние и т. д.). Такой подход позволит улучшить спортивные результаты и снизить риск спортивных травм опорно-двигательного аппарата.

Ключевые слова:
прыжки в воду, генетика спорта, травматизм в спорте, спортивный отбор
Список литературы

1. Moran C. N., Pitsiladis Y. P. Tour de France Champions born or made: Where do we take the genetics of performance? DOIhttps://doi.org/10.1080/02640414.2016.1215494 // J. Sports Sci. 2017. No. 35. P. 1411–1419. EDN: https://elibrary.ru/YWUBJX.

2. Модельные характеристики соревновательной деятельности по показателям функциональной подготовленности спортсменов / Балберова О. В., Сидоркина Е. Г., Кошкина К. С., Плачи Ю. К., Быков Е. В. DOI:https://doi.org/10.15293/2658-6762.2103.09 // Science For Education Today. 2021. Т. 11, № 3. С. 161–176. EDN: https://elibrary.ru/YDGDQT

3. Collins M. Genetic risk factors for soft-tissue injuries 101: a practical summary to help clinicians understand the role of genetics and ‘personalised medicine. DOIhttps://doi.org/10.1136/bjsm.2009.058040 // British journal of sports medicine. 2010. V. 44, No 13. P. 915–917.

4. Injury epidemiology in male and female competitive diving athletes: A four-year observational study / B. M. Currie, M. Hetherington, G. Waddington [et al.]. DOIhttps://doi.org/10.1016/j.jsams.2024.08.204 // Journal of Science and Medicine in Sport. 2024. Vol. 27, Issue 12. P. 849–855.

5. Current Concepts in Rehabilitation for Traumatic Anterior Shoulder Instability / Ma R., Brimmo O.A., Li X., Colbert L. DOIhttps://doi.org/10.1007/s12178-017-9449-9 // Curr Rev Musculoskelet Med. 2017. Vol. 10 (4). P. 499–506.

6. Jones N. S. Competitive Diving Principles and Injuries. DOIhttps://doi.org/10.1249/JSR.0000000000000401 // Curr Sports Med Rep. 2017. Vol. 16 (5). P. 351–356.

7. Mountjoy M. Injuries and medical issues in synchronized Olympic sports. DOIhttps://doi.org/10.1249/JSR.0b013e3181b84a09 // Curr Sports Med Rep. 2009. Vol. 8 (5). P. 255–261.

8. Lian O. B., Engebretsen L., Bahr R. Prevalence of jumper's knee among elite athletes from different sports: a cross-sectional study. DOIhttps://doi.org/10.1177/0363546504270454 // The American Journal of Sports Medicine. 2005. No. 33 (4). P. 561–567.

9. Hoffmann A., Gross G. Tendon and ligament engineering in the adult organism: mesenchymal stem cells and gene-therapeutic approaches. DOIhttps://doi.org/10.1007/s00264-007-0395-9 // International orthopaedics. 2007. Vol. 31, No 6. P. 791–797. EDN: https://elibrary.ru/KVJRSH.

10. Collins M., Raleigh S. M. Genetic risk factors for musculoskeletal soft tissue injuries. DOIhttps://doi.org/10.1159/000235701 // Med Sport Sci. 2009. No. 54. P. 136–149.

11. The genetics of sports injuries and athletic performance / Maffulli N., Margiotti K., Fazio V.M., Longo U.G., Loppini M., Denaro V. DOIhttps://doi.org/10.11138/mltj/2013.3.3.179 // Muscles Ligaments Tendons J. 2013. Vol. 3, No. 3. P. 173–189. EDN: https://elibrary.ru/SOWUVJ.

12. Risk factors associated with non-contact anterior cruciate ligament injury: a systematic review / Pfeifer C. E., Beattie P. F., Sacko R. S., Hand A. // Int J Sports Phys Ther. 2018. Vol. 13 (4). P. 575–587.

13. Genetic risk factors for anterior cruciate ligament ruptures: COL1A1 gene variant / Posthumus M., September A. V., Keegan M., O'Cuinneagain D., Van der Merwe W., Schwellnus M. P., Collins M. DOIhttps://doi.org/10.1136/bjsm.2008.056150 // Br J Sports Med. 2009. Vol. 43, No. 5. P. 352–356.

14. A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality / Mann V., Hobson E. E., Stewart T. L. [et al.]. DOIhttps://doi.org/10.1172/JCI10347 // J Clin Invest. 2001. Vol. 107, No. 7. P. 899–907. EDN: https://elibrary.ru/LRLVKJ.

15. Type I collagen alpha1 Sp1 polymorphism and the risk of cruciate ligament ruptures or shoulder dislocations / Khoschnau S., Melhus H., Jacobson A. [et al.]. DOIhttps://doi.org/10.1177/0363546508320805 // Am J Sports Med. 2008. Vol. 36, No. 12. P. 2432–2436.

16. Gene variants within the COL1A1 gene are associated with reduced anterior cruciate ligament injury in professional soccer players / Ficek K., Cieszczyk P., Kaczmarczyk M. [et al.]. DOIhttps://doi.org/10.1016/j.jsams.2012.10.004 // Journal of science and medicine in sport. 2013. Vol. 16, No. 5. P. 396–400.

17. The +1245g/t polymorphisms in the collagen type I alpha 1 (col1a1) gene in polish skiers with anterior cruciate ligament injury / Stepien-Slodkowska M., Ficek K., Eider J. [et al.]. DOIhttps://doi.org/10.5604/20831862.1029823 // Biology of sport. 2013. Vol. 30, No. 1. P. 57–60.

18. Is Sp1 binding site polymorphism within COL1A1 gene associated with tennis elbow? DOIhttps://doi.org/10.1016/j.gene.2013.12.014 / Erduran M., Altinisik J., Meric G. [et al.] // Gene. 2014. Vol. 537, No. 2. P. 308–311.

19. Is the Combination of COL1A1 Gene Polymorphisms a Marker of Injury Risk? / Stepien-Slodkowska M., Ficek K., Zietek P. [et al.]. DOIhttps://doi.org/10.1123/jsr.2015-0151 // J Sport Rehabil. 2017. Vol. 26 (3). P. 234–238.

20. The COL5A1 genotype is associated with range of motion / Lim S. T., Kim C. S., Kim W. N., Min S. K. DOI:https://doi.org/10.5717/jenb.2015.15052701 // Physical Activity and Nutrition. 2015. Vol. 19 (2). P. 49–53.

21. The COL5A1 gene and Achilles tendon pathology / Mokone G. G., Schwellnus M. P., Noakes T. D., Collins M. DOIhttps://doi.org/10.1111/j.1600-0838.2005.00439.x // Scand J Med Sci Sports. 2006. Vol. 16, No. 1. P. 19–26.

22. Variants within the MMP3 gene are associated with Achilles tendinopathy: possible interaction with the COL5A1 gene / Raleigh S. M., van der Merwe L., Ribbans W. J. [et al.]. DOIhttps://doi.org/10.1136/bjsm.2008.053892 // Br J Sports Med. 2009. Vol. 43 (7). P. 514–520.

23. Lippi G., Longo U.G., Maffulli N. Genetics and sports. DOIhttps://doi.org/10.1093/bmb/ldp007 // Br Med Bull. 2010. Vol. 93, No. 1. P. 27–47. EDN: https://elibrary.ru/MZARBT.

24. Targeting Hub Genes Involved in Muscle Injury Induced by Jumping Load Based on Transcriptomics / Shi X., Wang Y., Liu H., Har R. DOIhttps://doi.org/10.1089/dna.2022.0285 // DNA and Cell Biol. 2023. Vol. 42, No. 8. P. 498–506. EDN: https://elibrary.ru/OOHTYT.

25. Herrera D. G., Robertson H. A. Activation of c-fos in the brain. DOIhttps://doi.org/10.1016/S0301-0082(96)00021-4 // Progress in Neurobiology. 1996. Vol. 50, No. 2-3. P. 83–107. EDN: https://elibrary.ru/YBHLXF.

26. A requirement for the immediate early gene Zif268/Egr1 in the expression of late LTP and spatial long-term memory / Jones M. W., Errington M. L., French P. J. [et al.]. DOIhttps://doi.org/10.1038/85138 // Nature Neuroscience. 2001. Vol. 4, No. 3. P. 289–296.

27. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription / Kawauchi J., Zhang C., Nobori K. [et al.]. DOIhttps://doi.org/10.1074/jbc.M202974200 // J Biol Chem. 2002. Vol. 277 (41). P. 39025–39034.

28. ATF3 in Inflammation, Apoptosis, Ferroptosis, and Pathogen Infection / Liu S., Li Z., Lan S. [et al.] // Encyclopedia. URL: https://encyclopedia.pub/entry/55192 (accessed on 24.01.2025).

29. Vitamin D receptor gene polymorphisms and musculoskeletal injuries in professional football players / Massidda M., Corrias L., Bachis V. [et al.]. DOI:https://doi.org/10.3892/etm.2015.2364 // Experimental and Therapeutic Medicine. 2015. Vol. 9, No. 5. P. 1974–1978. EDN: https://elibrary.ru/UOPULT.

30. ACTN3 genotype is associated with human elite athletic performance / Yang N. MacArthur D.G., North K. [et al.]. DOIhttps://doi.org/10.1086/377590 // American Journal of Human Genetics. 2003. Vol. 73, No. 3. P. 627–631. EDN: https://elibrary.ru/MCHAOJ.

31. Association of the ACTN3 R577X polymorphism with glucose tolerance and gene expression of sarcomeric proteins in human skeletal muscle / Riedl I., Osler M. E., Benziane B. [et al.]. DOIhttps://doi.org/10.14814/phy2.12314 // Physiol Rep. 2015. Vol. 3 (3). P. 12314.

32. Unravelling the genetic susceptibility to develop ligament and tendon injuries / Longo U. G., Loppini M., Margiotti K. [et al.]. DOIhttps://doi.org/10.2174/1574888x09666140710112535 // Curr Stem Cell Res Ther. 2015. Vol. 10, No. 1. P. 56–63.

33. Van Heyningen V., Yeyati P. L. Mechanisms of non-Mendelian inheritance in genetic disease // Human Molecular Genetics. 2004. Vol. 13, No. 2. P. R225. EDN: https://elibrary.ru/IPANTT.

34. Can Genetic Testing Identify Talent for Sport? / Pickering C., Kiely J., Grgic J. [et al.]. DOIhttps://doi.org/10.3390/genes10120972 // Genes. 2019. Vol. 10, No. 12. P. 972. EDN: https://elibrary.ru/ZKGUVI.

35. Ethics of genetic testing and research in sport: A position statement from the Australian Institute of Sport / Vlahovich N., Hughes D., Frticker P. A. [et al.]. DOIhttps://doi.org/10.1136/bjsports-2016-096661 // Br. J. Sports Med. 2017. Vol. 51, No. 1. P. 5–11. EDN: https://elibrary.ru/WKHCZF.

36. Williams A. G., Day S. H., Wackerhage H. Genetic testing for sports performance, responses to training and injury risk: Practical and ethical considerations. DOIhttps://doi.org/10.1159/000445244 // Med. Sport Sci. 2016. Vol. 61. P. 105–119. EDN: https://elibrary.ru/WVDMVF.

37. Pickering C., Kiely J. Can the ability to adapt to exercise be considered a talent-And if so, can we test for it? DOIhttps://doi.org/10.1186/s40798-017-0110-3 // Sports Med. Open. 2017. Vol. 3, No. 1. P. 43. EDN: https://elibrary.ru/YGEUCL.

38. The magnitude of Yo-Yo test improvements following an aerobic training intervention are associated with total genotype score / Pickering C., Kiely J., Collins D. [et al.]. DOIhttps://doi.org/10.1371/journal.pone.0207597 // PLoS One. 2018. Vol. 13, No. 11. P. e0207597. EDN: https://elibrary.ru/ZCINIO.

39. A genetic-based algorithm for personalized resistance training / Jones N., Kiely J., Suraci B. [et al.]. DOIhttps://doi.org/10.5604/20831862.1198210 // Biol. Sport. 2016. Vol. 33, No. 2. P. 117–126.

40. Genomics in rugby union: A review and future prospects / Heffernan S. M., Day S. H., Williams A. G. [et al.]. DOIhttps://doi.org/10.1080/17461391.2015.1023222 // Eur. J. Sport Sci. 2015. Vol. 15, No. 6. P. 460–468. EDN: https://elibrary.ru/WQITXB.

41. Cecile A., Janssens J. W., Joyner M. J. Polygenic Risk Scores That Predict Common Diseases Using Millions of Single Nucleotide Polymorphisms: Is More, Better? DOIhttps://doi.org/10.1373/clinchem.2018.296103 // Clin Chem. 2019. Vol. 65, No. 5. P. 609–611.

42. Ehlert T., Simon P., Moser D.A. Epigenetics in sports. DOIhttps://doi.org/10.1007/s40279-012-0012-y // Sports Med. 2013. Vol. 43, No. 2. P. 93–110. EDN: https://elibrary.ru/WMSUDX.

43. Luo W., Nie Q., Zhang, X. MicroRNAs involved in skeletal muscle differentiation. DOIhttps://doi.org/10.1016/j.jgg.2013.02.002 // J. Genet. Genomics. 2013. Vol. 40, No. 3. P. 107–116.

44. Exercise training and DNA methylation in humans / Voisin S., Eynon N., Yan X. [et al.]. DOIhttps://doi.org/10.1111/apha.12414 // Acta Physiol. 2015. Vol. 213, No. 1. P. 39–59. EDN: https://elibrary.ru/XTAIHR.

45. Richards E. J. Inherited epigenetic variation-Revisiting soft inheritance. DOIhttps://doi.org/10.1038/nrg1834 // Nat. Rev. Genet. 2006. No. 7. P. 395–401.

46. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns / Lokk K., Modhukur V., Rajashekar B. [et al.]. DOIhttps://doi.org/10.1186/gb-2014-15-4-r54 // Genome Biol. 2014. Vol. 15, No. 4. P. 1–14. EDN: https://elibrary.ru/FGPAFQ.

47. The prospective study of epigenetic regulatory profiles in sport and exercise monitored through chromosome conformation signatures / Hall E. C. R., Stebbings G. K., Williams A. G. [et al.]. DOIhttps://doi.org/10.3390/genes11080905 // Genes. 2020. Vol. 11, No. 8. P. 1-19. EDN: https://elibrary.ru/BZLGKE.

Войти или Создать
* Забыли пароль?